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Abstract

Spiking Neural Networks (SNNs) have acttracted significant
academic interest due to their distinctive features of low
power consumption and rapid computing capabilities on neu-
romorphic chips. However, due to the limited information ca-
pacity of spike sequences, SNNs often suffer from signifi-
cant quantization errors. As a result, most current SNNs are
applied to image classification tasks where the precision of
output values is less critical. In tasks such as image restora-
tion that require high regression accuracy, SNN are still dif-
ficult to handle effectively. In this work, we focus on apply-
ing SNN to the field of image restoration, with particular at-
tention to training methods and the design of spiking neu-
ron. Firstly, we improved the hybrid training method to bet-
ter suit image restoration tasks. Specifically, we use conver-
sion approach to obtain the initial SNN, followed by adding a
convolutional layer after the final SNN layer to map discrete
spikes to continuous pixel values. We also introduced a mem-
brane potential recycling mechanism to reduce quantization
errors, and finally, fine-tuned the model using the surrogate
gradient method. Secondly, to further reduce quantization er-
rors, we designed a new spiking neuron, Membrane Potential
Reuse Neuron(MPRN). This neuron determines whether to
continue firing after network inference based on the residual
membrane potential, minimizing quantization errors as much
as possible. We conducted experiments on both dehazing and
denoising tasks. Experimental results show that our method
achieves over 90% model conversion rate within just 10 time
steps and decrease energy consumption by 20% to 50% com-
pared to ANNs.

Introduction
Image restoration is an important task in the field of com-
puter vision, aimed at improving the visual quality and
usability of images. Typical image restoration tasks in-
clude image dehazing, image denoising, and image super-
resolution, among others. In recent years, Artificial Neural
Networks (ANNs) have achieved great success in the field
of image restoration(Li et al. 2017; Zhang et al. 2017; Liang
et al. 2021). However, as network models become increas-
ingly complex, computational complexity and inference en-
ergy consumption have become significant challenges for
model in the real world(Brown 2020; Rathi et al. 2021).
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Spiking Neural Networks (SNNs) offer a promising solu-
tion to the energy consumption problem of ANN models by
mimicking the functioning mechanisms of the brain(Maass
1997). SNN transmit information through spike sequences,
adding a temporal dimension compared to ANN. At each
time step, a neuron will only release a spike if the membrane
potential of the spiking neuron exceeds its voltage threshold;
otherwise, the neuron remains silent. Additionally, due to the
binary nature of spike sequences, costly multiplication oper-
ations in network computations can be replaced with more
energy-efficient accumulation operations. Therefore, spik-
ing neurons can only trigger sparse additions when they re-
ceive spikes; otherwise, they remain idle. This spike-driven
SNN demonstrates a significant low-power advantage over
ANN when implemented on neuromorphic chips(Yao et al.
2024; Davies et al. 2018; Merolla et al. 2014).

However, due to the limited information representation
capacity of spike sequences and the non-differentiability of
spikes, training high-performance SNNs has become a chal-
lenging problem. Compared to ANNs, which can transmit
information using continuous values, SNNs rely solely on
0/1 spike sequences for information transmission. This in-
evitably introduces quantization errors, leading to a decline
in network performance. Through the efforts of researchers,
SNNs have achieved accuracy comparable to ANNs in im-
age classification tasks and have significantly reduced en-
ergy consumption compared to ANNs(Bu et al. 2022; Lan
et al. 2023; Shi, Hao, and Yu 2024), yet research on applying
SNNs to image restoration remains limited. With the rising
complexity of deep learning-based image restoration mod-
els, adapting SNNs for these tasks is essential.

Overall, two challenges lie ahead of us. First, reducing the
quantization error in SNNs is critical, as image restoration
tasks require higher output precision compared to classifi-
cation tasks and are more sensitive to quantization errors.
Second, the challenge is how to represent discrete spike se-
quences as continuous image pixel values. To address these
challenges, we were inspired by Rathi et al.(Rathi et al.
2019) and proposed a new hybrid training method to bet-
ter suit image restoration tasks. Specifically, we divide the
training process into two stages. In the first stage, we use
the ANN2SNN(Cao, Chen, and Khosla 2015; Diehl et al.
2015) method to convert the ANN into an SNN. After the
first phase training, we introduced a convolutional layer into



the SNN as a mapper from neuron firing rates to pixel val-
ues, thereby expanding the representational capacity of the
discrete firing rates. Additionally, we observed that after in-
ference, many neurons in the final layer retain a significant
amount of membrane potential. To make full use of this
residual membrane potential, we quantize it into an infor-
mation value and incorporate it into the final result, reduc-
ing quantization errors and adding more continuity to the
output. Finally, in the second stage of training, we use the di-
rect training method(Neftci, Mostafa, and Zenke 2019; Wu
et al. 2018) to train the SNN, further optimizing the model
parameters and the pixel mapper. To further reduce quan-
tization errors, we proposed a Membrane Potential Reuse
Neuron(MPRN), which determines whether to continue fir-
ing based on the current membrane potential after the final
time step. This mechanism minimizes information loss by
utilizing the remaining potential.The main contributions of
this paper are as follows:

• We employed and improved the hybrid training method
to train image restoration networks, modifying it to bet-
ter suit image restoration tasks. To the best of our knowl-
edge, this is the first time that Spiking Neural Networks
have been applied to the image dehazing task.

• By analyzing the errors introduced by the conversion
method, We propose a Membrane Potential Reuse Neu-
ron(MPRN), which can decide whether to continue spik-
ing based on the membrane potential after SNN inference
has finished, in order to reduce quantization errors in the
network.

• We evaluated our method on image dehazing and image
denoising tasks, and the experimental results show that
our approach can achieve excellent results within a small
number of time steps.

Related Work
Image Restoration. Currently, deep learning-based image
restoration algorithms have been widely applied in tasks.
However, these algorithms often rely on complex model
computations, which result in significant computational
costs, making them challenging to deploy in real-time pro-
cessing(Su, Xu, and Yin 2022).
SNN training Method. Due to the discontinuity of spike
sequences, we cannot simply use the backpropagation al-
gorithm to train SNNs in the same way as we do for
ANNs. The two most commonly used methods for train-
ing SNNs are using surrogate gradient for backpropaga-
tion(direct SNN training)(Neftci, Mostafa, and Zenke 2019;
Wu et al. 2018) and converting pre-trained ANN models into
SNN(ANN2SNN)(Cao, Chen, and Khosla 2015; Diehl et al.
2015). In direct SNN training, backpropagation uses a sur-
rogate gradient by replacing the non-differentiable spiking
process with a differentiable function. Using this method,
we can train SNNs similarly to ANNs and achieve com-
mendable results in a limited number of time steps. How-
ever, this approach performs well only in SNNs with a rela-
tively small number of layers and still shows a significant
gap compared to ANNs when applied to complex, large-
scale datasets(Lan et al. 2023). Additionally, because SNNs

introduce an extra temporal dimension, their training re-
quires a significant amount of time and consumes substan-
tial GPU resources, leading to high resource demands. The
ANN2SNN method involves transferring a pre-trained ANN
model to an SNN, allowing for good results without the need
for additional training. To achieve better conversion results,
the ANN2SNN method typically requires more time steps
compared to direct SNN training, meaning it needs longer
inference time.
Image Restoration based on SNN. SNNs have achieved
great success in the field of image classification, and there
has been research on their application in tasks such as ob-
ject detection(Kim et al. 2020; Luo et al. 2024), recog-
nition(Amir et al. 2017; Lan et al. 2023), and segmenta-
tion(Patel et al. 2021). However, there is still limited re-
search on their use in the field of image restoration. Song
et al.(Song et al. 2024) introduced SNNs to the task of im-
age derain and achieved strong results by designing spiking
residual blocks and incorporating a mixed attention mech-
anism. However, their proposed model is not fully spike-
driven, as they incorporated floating-point multiplications
during the computation process, which can make it chal-
lenging to deploy the model on neuromorphic hardware.
Castagnetti et al.(Castagnetti, Pegatoquet, and Miramond
2023) were the first to apply SNNs to the image dehazing
task,using a learnable neuron model to achieve excellent re-
sults, however, there is still room for improvement.

Proposed Solution
Overall Framework
The SNN training framework we propose is shown in Fig-
ure 1. The entire training process is divided into two stages.
First, we perform the ANN-to-SNN conversion following
(Rueckauer et al. 2017) to obtain the initial SNN. After-
ward, we replace the neurons in the SNN with a membrane
potential reuse neuron (MPRN). Then, we add a Convolu-
tional Pixel Mapper after the output layer of the SNN to
achieve a continuous approximation of the discrete firing
rates. The residual membrane potential information of the
last-layer neurons is computed using the Membrane Poten-
tial Recycling Mechanism and incorporated into the final re-
sult. Finally, we further optimize the pixel mapper, MPRN,
and other network parameters using direct training based on
the surrogate gradient method.

Convolutional Pixel Mapper
In SNNs, discrete spikes are used to transmit information,
which inevitably leads to quantization errors when process-
ing continuous image data. Since each neuron can release at
most one spike at each time step, the number of spikes emit-
ted by each neuron is

∑T
1 sl(t) ∈ {0, . . . , T}. Therefore, the

output rL =
∑T

1 sL(t)

T has only T + 1 possible values. This
presents a significant challenge for representing continuous
pixel values. To achieve finer output, we need to increase the
value of T . For example, to obtain an output value of 0.1,
we need at least ten time steps, and to obtain an output value
of 0.01, we need at least 100 time steps. But increasing the
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Figure 1: The proposed hybrid training framework. On the left is the conversion process from ANN to SNN, where parameter
transfer occurs and ReLU is replaced by MPRN neurons. On the right is the training process, where the Pixel Mapper and
membrane potential reuse mechanism are added to the output layer after the initial SNN, followed by backpropagation training
using a surrogate gradient function.

value of T will lengthen the network’s inference time, which
is detrimental to practical applications.

To solve this problem, we proposed using a convolutional
layer as a mapper from discrete firing rates to continuous
pixel values. Specifically, after obtaining the initial SNN in
the first stage, we add a convolutional layer after the out-
put layer of the SNN. The discrete spikes from the neuron
output are mapped to a more continuous space through the
convolution operation. Since the entire mapping process is
spike-driven, it only adds a minimal amount of computation.

Membrane Potential Recycling Mechanism
After the SNN inference ends, since the neuron’s firing can-
not convert all of its membrane potential into spikes, there
will still be a significant amount of membrane potential
remaining on each layer of neurons. This portion of the
membrane potential is often discarded either because the
time steps are insufficient or because it does not exceed
the threshold. In fact, this remaining membrane potential
still contains a significant amount of information. For im-
age restoration tasks that require pixel-level precision, it is
necessary to reutilize this information to achieve better accu-
racy. First, let’s analyze the amount of information contained
in the residual membrane potential. We assume that a neu-
ron with an initial membrane potential of ṽ, receiving input
ṽ at each time step, can fully discharge after T̃ time steps,
resulting in a final membrane potential of 0. Therefore, we
have the following equation:

ṽ · T̃
Vth

= n, (1)

where Vth is the threshold of the neuron, and n is the num-
ber of spikes released during the entire process. Further, we
obtain Eq. 2 .

ṽ

Vth
=

n

T̃
, (2)

n
T̃

represents the average number of spikes that the neuron
can release at each time step. Thus, we can express the mem-
brane potential ṽ when the threshold is Vth as being equiv-
alent to n

T̃
spikes. Since we use the firing rate as the output,

the amount of information contained in a membrane poten-
tial of size ṽ can be expressed by the following equation:

I =
n
T̃

T
=

ṽ

Vth · T
, (3)

where I represents the amount of information. To utilize this
information, we added an additional data pathway from the
last layer of neurons to the output. At the final time step
of inference, we calculate the information content from the
residual membrane potential of the last layer neurons and
add it to the final result. Thus, we obtain the final output of
the network as follows:

Output =
1

T

T∑
1

Mapper(sL(i)) + I. (4)

where the Mapper refers to the pixel mapper mentioned in
previous section. We only reutilize the membrane potential
of the neurons in the last layer because this approach avoids
introducing excessive additional computation and eliminates
the need for floating-point multiplication operations. The re-
utilization of the residual membrane potential from upper
layers is achieved through the neuron model proposed in the
next section.
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Figure 2: Visual comparisons on SOTS-outdoor and TestSet
A. We set the timestep to 10.

Membrane Potential Reuse Neuron Model
From the analysis in the previous section, we can see that
after inference, neurons in the upper layers of the SNN still
retain information. Therefore, we propose a new type of neu-
ron designed to reduce information loss in these upper-layer
neurons. Starting from the error term

∣∣∣ vl(T )
T ·Vth

∣∣∣ according to
(Rueckauer et al. 2017), in addition to increasing the number
of time steps T , we can also reduce the magnitude of

∣∣vl(T )∣∣
to minimize the error term. Assuming that after the final time
step, the neuron’s membrane potential is ṽ > 0, we know
that firing can reduce the membrane potential; therefore, we
can reduce ṽ by firing, thereby reducing the error. When the
|ṽ| before firing is greater than the |ṽ| after firing, the error
can be reduced. At this point, we have:

|ṽ| > |ṽ − Vth| , (5)

solving this yields:

ṽ >
1

2
· Vth, (6)

Based on this, we propose Membrane Potential Reuse Neu-
ron Model. After the final time step, we modify the firing
equation of the IF neuron according to the following equa-
tion:

sl(t) =

{
β, if vl(T + 1) ≥ α · V l

th

0, if vl(T + 1) < α · V l
th

, (7)

where α is a hyperparameter in the range (0.5, 1] , and β is
a trainable parameter. During the given time steps, MPRN
follows the firing rules of the IF neuron. After the time steps
are exhausted, MPRN extends to a new time step and deter-
mines whether it should continue firing based on the afore-
mentioned equation. Additionally, to enhance the adaptabil-
ity of MPRN, we set the threshold Vth of MPRN as a train-
able parameter. This allows both β and Vth to be optimized
during the second phase of training. However, there is an is-
sue that needs to be addressed: since the spike value released
by MPRN during the extended time step can take on any ar-
bitrary value, this could disrupt the spike-driven nature of the
SNN. Fortunately, Guo et al.(Guo et al. 2024) have pointed

Table 1: The energy consumption of the ANN models AOD-
Net and DnCNN.

task dataset Energy(mJ)

Dehazing TestSet A 2.467
Denoising BSD68 393.555

out a solution for us. We can use the reparameterization tech-
nique to absorb β into the convolution kernels, ensuring that
the spike value remains 0 or 1. Specifically, we can perform
reparameterization according to the following equation:

G = F ∗ (β ·B) = (β · F ) ∗B = F̃ ∗B. (8)

where G represents the computation result, F is the convo-
lution kernel, B is the 0-1 spike feature map, and F̃ is the
reparameterized convolution kernel.

σ=15

σ=25

σ=50

noise Rueckauer 
et al.

lan et al. Ours(T=15) ANN GT

Figure 3: Visual comparisons on denoise task. In methods
Rueckauer et al. and lan et al., we set the time step to 20.

Experiments
Experimental Setting
Datasets. For the image dehazing task, we adopt the same
indoor synthetic dataset used in the previous work(Li et al.
2017) for training, and TestSet A for testing, which contains
3,170 hazy indoor images. For the image denoising task, we
used the same training and testing sets as (Zhang et al. 2017).
The training set consists of 400 grayscale images, while the
testing set is BSD68. We evaluated the model’s denoising
capability on additive Gaussian noise at noise levels of σ =
[15, 25, 50], where, σ represents the standard deviation of
the Gaussian noise.
Evaluation Metrics. For denoising and dehazing tasks, we
evaluate performance using PSNR and SSIM metrics, fur-
thermore, we retrain some SOTA SNN methods in other



Table 2: The baseline ANN dehazing model uses AOD-Net, with results on the TestSet A datasets. PSNR-loss indicates the loss
in PSNR after conversion to SNN, and Rate(%) represents the average of the PSNR conversion rate and SSIM conversion rate.

TestSet A

Methods ANN SNN

PSNR↑ SSIM↑ Timestep↓ PSNR↑ SSIM↑ PSNR-Loss↓ Rate↑ Energy(mJ)↓

(Rueckauer et al. 2017) 19.53 0.8165
10 16.13 0.6291 3.40 79.8 1.819
20 18.42 0.7252 1.11 91.6 3.817
50 19.45 0.7964 0.08 98.6 9.864

(Bu et al. 2022) 18.59 0.6435
5 16.69 0.5926 1.9 90.9 -
8 18.42 0.7252 1.11 99.4 -

10 1.54 0.6663 1.05 98.9 -

(Lan et al. 2023) 19.53 0.8165
10 16.44 0.6321 3.09 80.8 -
20 18.42 0.7252 1.11 91.6 -
50 19.45 0.7964 0.08 98.6 -

SpikingIR (Ours) 19.53 0.8165
5 19.63 0.7884 -0.10 98.5 1.096
8 19.76 0.7952 -0.23 99.3 1.898

10 19.95 0.8106 -0.42 100 2.103

Table 3: Quantitative comparisons BSD68 for image denoising at different noise levels.

BSD68

σ Methods ANN SNN

PSNR↑ SSIM↑ Timestep↓ PSNR↑ SSIM↑ PSNR-Loss↓ Rate(%)↑Energy(mJ)↓

15
DnSNN 31.730 - 15 31.593 - 0.137 99.6 -

SpikingIR (Ours) 31.564 0.8930 10 31.378 0.8853 0.186 99.4 192.530
15 31.467 0.8891 0.097 99.7 262.722

25
DnSNN 29.230 - 15 29.025 - 0.205 99.3 -

SpikingIR (Ours) 28.879 0.8262 10 28.658 0.8108 0.221 99.2 210.281
15 28.721 0.8176 0.158 99.5 286.863

50
DnSNN 26.230 - 15 25.94 - 0.290 98.9 -

SpikingIR (Ours) 25.114 0.6839 10 25.007 0.6649 0.107 99.6 216.248
15 25.041 0.6725 0.073 99.7 299.949

tasks with the open-source code for fair comparison. More-
over, we calculate the average conversion rate of PSNR and
SSIM for the dehazing task and the conversion rate of PSNR
for the denoising task to evaluate their performance. The
conversion rate is defined as the ratio of the performance
of the SNN to the performance of the ANN(Lan et al. 2023).

Experimental results

The experimental results of our method on dehazing and de-
noising tasks are shown in Tables 2 and 3. The energy con-
sumption of the two ANN models is shown in Table 1. From
the experimental results, we observe that in dehazing task,
our method achieves superior performance on both the Test-
SetA dataset with only 5 timesteps and can achieve loss-
less conversion within 10 timesteps. Compared to ANN, our
method reduces energy consumption by more than 50% in 5
time steps and by approximately 10% in 10 time steps; com-
pared to other SNN methods, our method can achieve better
results in fewer time steps. In the denoising task, we com-
pared our method with DnSNN(Castagnetti, Pegatoquet, and
Miramond 2023). Although DnSNN has a higher PSNR, this
is actually due to the performance differences in ANN. Com-

paring on PSNR-loss and rate is a more fair choice. It can be
observed that our method consistently performs better than
DnSNN on these two metrics at the same time steps. Com-
pared to the ANN, our method can reduce energy consump-
tion by nearly 50% at 10 timesteps and by around 10% at 15
timesteps. The visualization results are shown in Figures 2
and 3.

Conclusion
We propose an efficient SNN conversion method aimed at
reducing the significant performance gap between ANN and
SNN in image restoration tasks. To achieve this, we mainly
optimize the SNN training method and reduce quantization
errors. A novel hybrid training approach is proposed, incor-
porating convolutional pixel mapping and membrane poten-
tial reuse mechanisms to reduce network quantization errors.
To further enhance error reduction, we propose using MPRN
neurons to replace IF neurons, ensuring that the network is
pulse-driven while making full use of the residual informa-
tion in the network. Extensive experimental results on image
dehazing and image denoising tasks demonstrate the effec-
tiveness of our proposed method.
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